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We extend the notion of a shell model to stratified systems, and propose one that represents
stratified, nonmagnetic, nonrotating convection at lowMach number.Motivated by profiles of
background stratification that support convection in stars such as the Sun, we study numerical
solutions corresponding to a highly unstable layer above a mildly unstable layer. We find that
at low Prandtl number, convective amplitudes decrease with depth in the lower layer. This
suggests that the suppression of convection in the deeper layers of the Sun’s convection zone
(the convective conundrum) can be addressed without necessarily appealing to rotation or
magnetic fields.

1. Introduction
Turbulent convection in stars is often described by the mixing length theory (Böhm-Vitense
1992, chapter 6). In this theory, convection is restricted to unstably stratified regions of a
star, and energy is predominantly transported by eddies of the order of the local scale height.
The entirety of the Sun’s convection zone is unstably stratified (Christensen-Dalsgaard et al.
1996; Schumacher & Sreenivasan 2020, fig. 3), and thus one expects solar convection to be
dominated by length scales of the order of the scale height deep in the convection zone. This
is also supported by simulations of deep solar convection (e.g. Miesch et al. 2008).
However, recent helioseismic analyses (Hanasoge et al. 2010, 2012, 2020) suggest that

the kinetic energy at large scales deep in the Sun’s convection zone is much lower than
expected.¶ Such suppression also seems to resolve other issues: Lord et al. (2014) find that
the observed photospheric spectra at supergranular and larger scales can be explained if
convection in deeper layers is suppressed at large scales; further, suppression of convective
velocities deep in the convection zone would allow simulations to reproduce solar differential
rotation, where the equator rotates faster than higher latitudes (Käpylä et al. 2014; Guerrero
et al. 2013; Gastine et al. 2013). The mismatch between observations and simulations is
often dubbed the ‘convective conundrum’; a variety of explanations have been proposed for
it.
According to one proposal, the deep convection zone is dominated by cool downflowing

plumes (‘entropy rain’) from a highly unstable layer near the surface (Spruit 1997; Branden-
burg 2016; Cossette & Rast 2016). In this picture, the length scale of convection is set by

† Email address for correspondence: kishoreg@iucaa.in
‡ Email address for correspondence: nishant@iucaa.in

¶ There is some controversy around these observations; for reviews, see Hanasoge et al. (2016); and p. 40
of Christensen-Dalsgaard (2021).
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the scale height at the surface or by the depth of the top unstable layer, and so convective
flows need not be excited at large scales deep in the convection zone. Possible reasons
for not observing such downflows in simulations of deep convection are that (i) enhanced
diffusivities suppress these small-scale flows; and (ii) near-surface layers are typically not
included in such simulations. However, Hotta et al. (2019) claim that the mere inclusion of
near-surface layers in simulations is not sufficient to explain the convective conundrum.
Another proposed solution to the convective conundrum is that the flows are suppressed

by small-scale magnetic fields (Fan & Fang 2014; Hotta et al. 2015; Hotta & Kusano 2021).
The small-scale magnetic fields supposedly result in an enhanced turbulent Prandtl number
(the Prandtl number, Pr, is the ratio of the kinematic viscosity to the thermal diffusivity; the
latter may include both conduction and radiation), which may then suppress the large-scale
velocities (O’Mara et al. 2016; Karak et al. 2018). However, it is still unclear (Karak et al.
2018) if an enhanced turbulent Prandtl number can reproduce the differential rotation profile
observed in the Sun.
A third proposal is that rotation suppresses convective flows at the largest scales (Feath-

erstone & Hindman 2016a). However, arguments about the influence of rotation typically
make assumptions about the convective amplitudes, and thus it is not clear if rotation alone
is enough to suppress the convective velocities, or if the velocities get suppressed by some
other effect, allowing rotation to become important.
More promisingly, Featherstone & Hindman (2016b) report that the kinetic energy at

large scales decreases as the Rayleigh number (Ra, a measure of how strongly convection
is driven) increases. Since Ra ∼ 1020 in the Sun (Schumacher & Sreenivasan 2020), this
may explain, to some extent, the convective conundrum. However, Käpylä (2021) find that
the spectral distribution of velocity is insensitive to Ra. This discrepancy might be due to
the different sub-grid-scale (SGS) models they use. The SGS diffusion in Featherstone &
Hindman (2016b) is applied to the total entropy, whereas Käpylä (2021) applies it only to
the entropy fluctuations such that it does not contribute to the mean energy flux.
Geophysical and laboratory flows are typically at Prandtl numbers (Pr) close to or much

larger than one. On the other hand, stellar convection takes place at very low Pr; e.g. in
the solar convection zone, Pr ∼ 10−6 (Schumacher & Sreenivasan 2020). It is difficult to
run simulations with Pr significantly different from unity, due to the wide range of scales
that need to be simultaneously resolved. Moreover, the widely-used anelastic approximation
exhibits spurious instabilities in rotating systems at low Pr (Calkins et al. 2015). Most 3D
simulations of stellar convection are run with enhanced diffusivities and Pr ∼ 1; e.g. the
ASH simulations (Miesch et al. 2008) use Pr = 0.25. Others (Hotta & Kusano 2021; Hotta
et al. 2019) use artificial diffusion schemes, but still seem to have Pr ∼ 1.
Considering 0.1 6 Pr 6 10, Käpylä (2021) finds that despite the velocity spectra

being rather insensitive to Pr, the nature of convection changes significantly, with stronger
downflows and larger overshoot depths at lowPr. Convection at lowPr appears very turbulent,
yet less efficient: with decreasing Pr, larger velocity amplitudes are needed to convect the
same amount of energy.
It seems to be common to make assertions about the nature of low-Pr convection based

on the simplified system of equations derived by Spiegel (1962). However, we note (as
recognized byLignières (1999)) that the aforementioned equations are only valid at lowPeclet
number (Pe, the ratio of the thermal diffusion timescale to the advection timescale); they are
thus not applicable to the solar convection zone, where Pe = RePr ∼ 107 (Schumacher &
Sreenivasan 2020). We are not aware of any simplified versions of the equations governing
convection in the simultaneous limit of high Peclet number and low Prandtl number.
Given the complexity of solar convection and the infeasibility of fully resolved simulations,

simplified models of convection help us understand which effects are important. We
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present one such simplified model, based on a generalization of ‘shell models’. Shell
models (Yamada & Ohkitani 1987; Brandenburg 1992; L’vov et al. 1998) are simplified
models of turbulence that have proved successful in deepening our understanding of energy
cascades in homogeneous, isotropic turbulence (see Biferale 2003 for a review). Shell models
representing convection in a thin layer (the Boussinesq approximation) have been studied
in the past (Brandenburg 1992; Kumar & Verma 2015). While shell models are themselves
quite interesting, our attitude towards them is that they are relatively simple systems that
nevertheless qualitatively capture some aspects of turbulent energy cascades.
In this paper, we study a generalized shell model, where the shell amplitudes are functions

of both the depth and the wavenumber, without considering rotation and magnetic fields. In a
setup consisting of a highly unstable layer above a weakly unstable layer, we find that simply
using a low enough Prandtl number causes the velocity amplitudes to decrease with depth.
Our results suggest that modelling the effect of a low Prandtl number is likely to be essential
for a complete explanation of the convective conundrum.
In section 2, we explain how we extend the notion of a shell model to a stratified system.

In section 3, we present numerical solutions of such a model and discuss their implications
for solar convection. Finally, in section 4, we state our main conclusions and suggest future
avenues of research.

2. Formulation of a shell model for stratified convection
2.1. Simplifying the equations of motion

Let us start with the following equations of motion for an ideal gas in a nonrotating plane-
parallel domain without magnetic fields:

𝜕𝜌

𝜕𝑡
= − ∇· (𝜌𝒗) (2.1)

𝜕𝒗

𝜕𝑡
= − (𝒗 · ∇)𝒗 − ∇𝑝

𝜌
+ 𝜇 ∇2𝒗 + 𝒈 (2.2)

𝜕𝑠

𝜕𝑡
= − 𝒗 · ∇𝑠 + 𝜅𝐶𝑃

𝑇
∇2𝑇 (2.3)

𝑇 ∝ 𝜌𝛾−1 exp
(
𝑠

𝐶𝑉

)
(2.4)

𝑝 = 𝜌𝑅𝑇 (2.5)

where 𝜌 is the density; 𝒗 is the velocity; 𝑝 is the pressure; 𝜇 is the kinematic viscosity; 𝒈 is the
acceleration due to gravity; 𝑠 is the specific entropy; 𝜅 is the thermal diffusivity (which may
include both conduction and radiation);𝑇 is the temperature;𝐶𝑃 is the specific heat at constant
pressure; 𝐶𝑉 is the specific heat at constant volume; 𝛾 ≡ 𝐶𝑃/𝐶𝑉 ; 𝑅 ≡ 𝐶𝑃 − 𝐶𝑉 ; and 𝑡 is
the time. We have neglected the effects of compressibility on viscous dissipation; neglected
viscous heating; neglected the effect of density variations on the thermal conductivity;
neglected internal heat sources/sinks; and assumed 𝜇, 𝜅, 𝑅, and 𝐶𝑃 are constant throughout
the domain.
Now, for every quantity � (= 𝜌, 𝒗, 𝑠, 𝑇, 𝑝), we perform the split,

� = �0 + �′ , (2.6)

where �0 represents a ‘background’, and �′ represents deviations from this background. We
assume the problem contains two disparate spatial scales, such that �′ can be treated as a
function of both a ‘small-scale’ coordinate and a ‘large-scale’ vertical coordinate, while �0
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is only a function of the ‘large-scale’ coordinate. Our basic approach will be to Fourier-
transform the ‘small-scale coordinate’ and bin it into shells, so that we end up with a shell
model whose dynamical variables depend both on the shell index and on a ‘large-scale’
coordinate that represents the stratification.
We assume 𝒗0 = 0, so that 𝒗′ = 𝒗. Further, we assume the background quantities are

prescribed solutions of the equations of motion, and do not evolve with time (i.e. the
background state is in hydrostatic equilibrium, and satisfies the ideal gas equation). Dropping
various terms which we expect to be nonessential,† recalling that the background is in
hydrostatic equilibrium, and simplifying some of the more complicated terms, we write the
equations of motion as

𝜕𝜌′

𝜕𝑡
= − ∇· (𝜌0𝒗) − ∇· (𝜌′𝒗) (2.7)

𝜕𝒗

𝜕𝑡
= − (𝒗 · ∇)𝒗 − ∇𝑝′

𝜌0
+ 𝜇 ∇2𝒗 + 𝜌

′𝒈

𝜌0
(2.8)

𝜕𝑠′

𝜕𝑡
= − 𝒗 · ∇𝑠0 − 𝒗 · ∇𝑠′ + 𝜅𝐶𝑃

𝑇0
∇2𝑇 ′ (2.9)

𝑇 ′ = 𝑇0

[
(𝛾 − 1) 𝜌

′

𝜌0
+ 𝑠′

𝐶𝑉

]
(2.10)

𝑝′ = 𝜌′𝑅𝑇0 + 𝜌0𝑅𝑇 ′ (2.11)

The procedure we will describe in section 2.2 can be carried out for the above set of
equations; however, they turn out to be numerically unstable unless a dissipative term is
added to the continuity equation (for an example of the usage of such terms, see Gent et al.
(2021)). We avoid this as the addition of such a term will complicate the interpretation of the
resulting shell model; in fact, it is suspected (Brandenburg 2016, p. 2) that such artificially
enhanced diffusivities are the reason numerical simulations of the deep solar convection zone
don’t agree with helioseismic observations. Instead, we work in the limit of infinite sound
speed, i.e. we neglect the pressure fluctuations, which immediately leads to

𝜌′

𝜌0
≈ −𝑇

′

𝑇0
(2.12)

One may thus consider the system of equations

𝜕𝒗

𝜕𝑡
= − (𝒗 · ∇)𝒗 + 𝜇 ∇2𝒗 − 𝑠′𝒈

𝐶𝑃

(2.13)

𝜕𝑠′

𝜕𝑡
= − 𝒗 · ∇𝑠0 − 𝒗 · ∇𝑠′ + 𝜅

𝑇0
∇2(𝑇0𝑠′) (2.14)

It turns out (on examining numerical solutions of the resulting shell model, not presented
here) that the behaviour of this system (at least the aspects we are interested in) is not
qualitatively changed by neglecting the variation of 𝑇0 in the entropy equation, so in what
follows, we work with the system

𝜕𝒗

𝜕𝑡
= − (𝒗 · ∇)𝒗 + 𝜇 ∇2𝒗 − 𝑠′𝒈

𝐶𝑃

(2.15)

𝜕𝑠′

𝜕𝑡
= − 𝒗 · ∇𝑠0 − 𝒗 · ∇𝑠′ + 𝜅 ∇2𝑠′ (2.16)

† This is of course highly subjective and difficult to justify a priori; however, we will see in section 3 that
we do manage to reproduce the effect we are interested in.
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2.2. Constructing the shell model
We now Fourier-transform the small-scale variable (say 𝒓) to the wavevector 𝒌, and restrict
the allowed values of 𝑘 ≡ |𝒌 | to

𝑘𝑛 = 𝑘1ℎ
𝑛−1 , where 𝑛 = 1, 2, 3, . . . , 𝑁 , (2.17)

where ℎ is called the inter-shell ratio. We further assume all 𝒌-dependent quantities depend
only on 𝑘 , and replace convolutions over the small-scale wavevector by summations over
neighbouring shells. While replacing convolutions, the choice of which shells to sum over
should be consistent with the relevant conservation laws. The Fourier transform of every
quantity �′(𝒓, 𝑍) is now denoted by �𝑛 (𝑍) (where 𝑍 is the large-scale coordinate). We
use �0(𝑍) to denote the (prescribed) background quantities, as before. Now, we replace the
continuous variable 𝑍 by a set of discrete ‘levels’ which are indexed by 𝑚 = 1, 2, 3, . . . , 𝑀 .
For all variables �, we take �𝑛 (𝑍) → �𝑛,𝑚. Derivatives wrt. 𝑍 are replaced by second-order
finite differences, so that, e.g.

d𝑠0
d𝑍

→
𝑠0,𝑚+1 − 𝑠0,𝑚−1
2Δ𝑍𝑚

(2.18)

where Δ𝑍𝑚 is a ‘level spacing’, which we assume to be a constant for the sake of simplicity.
To specify the boundary conditions, we add ‘ghost levels’ for which 𝑚 = 0, 𝑀 + 1. On these
ghost levels, all the fluctuating quantities are set to zero, while the background quantities are
set such that their gradient at the boundary is constant. For example,

𝑠𝑛,0 =

{
0 , 𝑛 ≠ 0
2𝑠𝑛,1 − 𝑠𝑛,2 , 𝑛 = 0

(2.19)

We then end up with the equations

𝜕𝑣𝑛,𝑚

𝜕𝑡
= 𝑖𝐶1 𝑘𝑛+1𝑣𝑛+2,𝑚𝑣

∗
𝑛+1,𝑚 + 𝑖𝐶2 𝑘𝑛𝑣𝑛+1,𝑚𝑣∗𝑛−1,𝑚 − 𝑖𝐶3 𝑘𝑛−1𝑣𝑛−1,𝑚𝑣𝑛−2,𝑚

− 𝜇𝑘2𝑛𝑣𝑛,𝑚 −
𝑠𝑛,𝑚𝑔

𝐶𝑃

(2.20a)

𝜕𝑠𝑛,𝑚

𝜕𝑡
= 𝑖𝐶1 𝑘𝑛+1𝑣

∗
𝑛+1,𝑚𝑠𝑛+2,𝑚 + 𝑖𝐶2 𝑘𝑛𝑣∗𝑛−1,𝑚𝑠𝑛+1,𝑚 − 𝑖𝐶3 𝑘𝑛−1𝑣𝑛−1,𝑚𝑠𝑛−2,𝑚

− 𝜅𝑘2𝑛𝑠𝑛,𝑚 + 𝜅
𝑠𝑛,𝑚+1 − 2𝑠𝑛,𝑚 + 𝑠𝑛,𝑚−1

Δ𝑍2𝑚︸                            ︷︷                            ︸
level coupling

− 𝑣𝑛,𝑚
𝑠0,𝑚+1 − 𝑠0,𝑚−1
2Δ𝑍𝑚

(2.20b)

The terms linking different shells above have been chosen such that the linkages in the
momentum equation are the same as those in the ‘Sabra’ (L’vov et al. 1998) model, while
the linkages in the entropy equation have been chosen to retain the conservation laws for 𝜌𝒗
and 𝜌𝑠 (before taking the limit of infinite sound speed). Note that coupling between different
vertical levels is only introduced by the term marked ‘level coupling’ above.
To solve equations 2.20a–b, we need to specify 𝑁 , 𝑀 , ℎ,𝐶1,𝐶2,𝐶3, 𝜇, 𝛾, 𝑔, and Δ𝑍𝑚. The

background is completely specified by the arbitrary choice of 𝑠0,𝑚. Initial values of 𝑠𝑛,𝑚 and
𝑣𝑛,𝑚 need to be specified. Henceforth, we set 𝐶1 = 1, 𝐶2 = −0.5, 𝐶3 = −0.5, and ℎ = 2; this
choice of coefficients was used to represent 3D homogeneous isotropic turbulence by L’vov
et al. (1998).
In appendix A, we list formulae that allow us to estimate the Rayleigh, Prandtl, and

Reynolds numbers given the values of model parameters.



6

2 4 6 8 10 12 14
m

0.01

0.00

0.01

0.02

0.03

s 0

0

50

100

150

200

250

0

Figure 1: Depth dependence of the background profiles used for all the cases presented
(𝑚 = 1: top layer; 𝑚 = 15: bottom layer). Solid (black): entropy; dashed (blue): density.
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Figure 2: Spectra at various vertical levels for Ra = 8.6 × 107. Larger values of 𝑚 are
deeper in the domain; Pr decreases from left to right. Only relative magnitudes of the
spectra at various depths are important here, as their absolute values are affected by the

process of varying Pr while keeping Ra constant; see appendix B.

3. Suppression of deep convection at low Prandtl number
We now present some solutions of equations 2.20. To solve them, we use the BDF solver
(Byrne & Hindmarsh 1975; Shampine & Reichelt 1997) from SciPy (Virtanen et al. 2020);
this is an implicit solver for stiff equations that can work in the complex domain. We evolve
the equations starting from a nonzero initial condition, and average the required quantities
(e.g. |𝑣𝑛 |2) over a time interval much larger than the correlation time of the shell variables.
For all the solutions presented here, we set the background entropy profile (figure 1) to

have a thin unstable layer with a large entropy gradient, on top of a thick unstable layer with a
smaller entropy gradient; additional thin and stably stratified layers are placed at the top and
bottom boundaries in order to maintain consistency with the boundary conditions. Initially,
we set 𝑠 = 1 for the first four shells at 𝑚 = 3, with the remaining dynamical variables being
set to zero. We set 𝑁 = 30; 𝑀 = 15; 𝛾 = 5/3; Δ𝑍𝑚 = 1, 𝐶𝑃 = 1, 𝜅 = 1. As described in
appendix A, the remaining parameters (𝜇 and 𝑔) can be used to control Ra and Pr. For the
Pr = 1 case, we set 𝑔 = 106 and 𝜇 = 1. For the other cases, 𝜇 and 𝑔 are varied as described
in appendix B.
First of all, we note that in an unstratified shell model (that represents homogeneous,
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Figure 3: Effect of the level coupling term (see equation 2.20b) at Pr = 10−6 and
Ra = 8.6 × 107.

isotropic, incompressible turbulence), one expects
〈
|𝑣𝑛 |2

〉
∼ 𝑘−2/3𝑛 (Biferale 2003, eq. 14),†

where the angle bracket denotes a time average. We find that the velocity spectra follow the
same scaling with wavenumber that is expected in the unstratified case (e.g. all three panels of
figure 2). This is perhaps not too surprising, as we have intentionally kept the shell couplings
similar to those in the unstratified case. It is possible that a more careful consideration of
symmetries and conservation laws suggests a different form of the shell coupling, which
could lead to a different power-spectral slope.
In figure 2, we see that simply decreasing Pr (keeping Ra fixed) is enough to cause

convective amplitudes to decrease with depth. What we observe in this model is that the
spectra remain roughly Kolmogorov at all depths, but that their amplitudes depend on the
depth at which they reside.
In figure 3, we see that when the ‘level coupling’ term is dropped from equation 2.20b,

lowering Pr does not result in suppression of large scales. This suggests that along with low
Pr, nonlocality is also crucial to the effect we observe.
A comparison of the three panels in figure 2 suggests that the effect of low Pr is to boost the

spectra at intermediate depths, rather than to suppress convection in deeper layers. However,
note that in all these cases, the background entropy gradient is the same. In simulations or
real systems where the total energy transport needs to be constant, the effect observed here
may manifest as an apparent suppression of the spectra with depth.
The behaviour described here (enhanced influence of surface layers at low Pr) is not

affected by whether the lower layers are stable or unstable; it is sufficient for the absolute
value of the entropy gradient in the lower layers to be much less than that in the upper layers.
A caveat is in order: note that all the spectra exhibit oscillations (in the wavenumber-

domain) at small wavenumbers. These oscillations are due to the flux of a conserved quantity
with dimensions of kinetic helicity (L’vov et al. 1998, p. 1813; Ditlevsen 2010, p. 101).
In forced shell models, one typically eliminates these oscillations by choosing a particular
kind of forcing; however, we do not have the freedom to do that in our system. Such
(presumably spurious) features seem to be quite common in previous shell models for

† Since the shells are logarithmically spaced, the KE spectrum is actually
〈
|𝑣𝑛 |2 /𝑘𝑛

〉
, which indeed

scales as 𝑘−5/3𝑛 .
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Boussinesq convection (Brandenburg 1992, fig. 1; Kumar & Verma 2015, fig. 4)‡¶. We
consider these oscillations (along with the fact that the spectra invariably peak at the largest
scale rather than the local scale height) as artefacts of the shell model, rather than as relevant
to full-fledged convection.
On a more speculative note, we see similarities between the behaviour of our shell model

and that expected from the entropy rain picture. If convection in the Sun were indeed driven
by downflowing plumes or thermals, the effect of low Pr could be understood in two ways:
(i) a low viscosity leads to less dissipation of the downflows’ momentum, allowing them to
persist longer (ii) a high thermal diffusivity leads to downflows losing their entropy signature
very quickly, leading to a suppression of buoyant braking. These seem to be consistent
with the suggestion of Käpylä (2021) that as Pr is lowered, the kinetic energy of the flows
increases.
Recently, Fuentes et al. (2022) have found that at low Pr, convective layers in simulated

gas giant planets start merging. The reason for their observation is unclear, but it may be
related to the mechanism at play in the Sun’s convection zone.
We also note that Vlaykov et al. (2022), in 2D simulations of a solar-like convective region,

have found that the near-surface layers affect even the bottom of the convection zone. The
apparent disagreement between their results and those of Hotta et al. (2019) can be explained
as follows: Hotta et al. (2019) used a slope-limited diffusion scheme which dissipates both
the momentum and the entropy in a similar fashion. Their results thus represent convection
at Pr ∼ 1. On the other hand, Vlaykov et al. (2022) performed an implicit LES of the
momentum equation, while retaining an explicit thermal diffusivity. Their results then seem
to represent convection at low Pr (Bricteux et al. 2012). This supports our finding that a low
Pr enhances the effect of a strongly stratified unstable layer on the convective velocities in
deeper layers.

4. Conclusions
We find that a low value of Pr, along with a thermal-diffusion-induced coupling between
different depths, is sufficient to cause suppression of convective spectra as one goes deeper
into a convecting domain underneath a strongly unstable surface layer. This suggests that low
Pr is at least as important as magnetic fields and rotation for a complete explanation of the
convective conundrum.
Given that Featherstone & Hindman (2016b) report suppression of large scales in their

simulations as Ra increases, we also note the possibility that large Ra and low Pr are
degenerate, and that some combination of the two serves as a better control parameter. In
light of our findings, the effects of low Pr on the stability and dynamics of convective
structures (such as the plumes invoked in the entropy rain picture) should be studied. These
will be taken up elsewhere.
Acknowledgments. We thank Axel Brandenburg and Petri Käpylä for valuable discussions on solar
convection. We thank Alexandra Elbakyan for facilitating access to scientific literature during the recent
pandemic. We acknowledge use of the Pegasus computing cluster at IUCAA.
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Appendix A. Dimensionless numbers in the shell model
Setting 𝐶𝑃 = 𝜅 = 1, we write

Pr = 𝜇 (A 1)
The Rayleigh number may be estimated as

Ra =
𝑔
(
𝑠0,𝑀 − 𝑠0,1

)
(𝑀Δ𝑍𝑚)3

𝜇
(A 2)

assuming that 𝑠0,𝑀 > 𝑠0,1 (i.e. that the domain is unstably stratified). Recalling that Ra =

GrPr andGr = Re2 (Schumacher & Sreenivasan 2020, eq. 17), we can estimate the Reynolds
number as

Re =

√︂
Ra
Pr

(A 3)

Appendix B. Varying the Prandtl number
We vary 𝜇 to change Pr (see appendix A). However, this also changes Ra. To vary Pr while
keeping Ra unchanged, we simultaneously modify

Pr → 𝐾Pr (B 1)
𝑔 → 𝐾𝑔 (B 2)

where 𝐾 is some positive constant.
Empirically, we find that with the above modifications, the turnover timescale roughly

scales as
𝜏 → 𝐾−1/2𝜏 (B 3)

which is consistent with estimating it from the free-fall velocity:

𝜏 ∼
(
𝑔∇𝑠0
𝐶𝑃

)−1/2
(B 4)

REFERENCES
Biferale, Luca 2003 Shell models of energy cascade in turbulence. Annual review of fluid mechanics

35 (1), 441–468.
Böhm-Vitense, Erika 1992 Introduction to Stellar Astrophysics: Volume 3.
Brandenburg, Axel 1992 Energy spectra in a model for convective turbulence. Physical review letters

69 (4), 605.
Brandenburg, Axel 2016 Stellar mixing length theory with entropy rain. The Astrophysical Journal

832 (1), 6.
Bricteux, L., Duponcheel, M., Winckelmans, G., Tiselj, I. & Bartosiewicz, Y. 2012 Direct and large

eddy simulation of turbulent heat transfer at very low prandtl number: Application to lead–bismuth
flows.Nuclear Engineering and Design 246, 91–97, selected and expanded papers from International
Conference Nuclear Energy for New Europe 2010, Portoro, Slovenia, September 6-9, 2010.

https://orcid.org/0000-0003-2620-790X
https://orcid.org/0000-0001-6097-688X
https://orcid.org/0000-0001-6097-688X


10

Byrne, George D. & Hindmarsh, Alan C. 1975 A polyalgorithm for the numerical solution of ordinary
differential equations. ACM Transactions on Mathematical Software (TOMS) 1 (1), 71–96.

Calkins, Michael A., Julien, Keith & Marti, Philippe 2015 The breakdown of the anelastic
approximation in rotating compressible convection: Implications for astrophysical systems.
Proc.R.Soc.A 471, 20140689.

Christensen-Dalsgaard, Jørgen 2021 Solar structure and evolution. Living Reviews in Solar Physics
18 (1), 1–189.

Christensen-Dalsgaard, J., Dappen, W., Ajukov, S. V., Anderson, E. R., Antia, H. M., Basu, S.,
Baturin, V. A., Berthomieu, G., Chaboyer, B., Chitre, S. M., Cox, A. N., Demarque, P.,
Donatowicz, J., Dziembowski, W. A., Gabriel, M., Gough, D. O., Guenther, D. B., Guzik, J. A.,
Harvey, J.W., Hill, F., Houdek, G., Iglesias, C. A., Kosovichev, A. G., Leibacher, J.W.,Morel,
P., Proffitt, C. R., Provost, J., Reiter, J., Rhodes, E. J., Jr., Rogers, F. J., Roxburgh, I. W.,
Thompson, M. J. & Ulrich, R. K. 1996 The current state of solar modeling. Science 272 (5266),
1286–1292.

Cossette, Jean-Francois & Rast, Mark P. 2016 Supergranulation as the largest buoyantly driven
convective scale of the sun. The Astrophysical Journal 829 (1), L17.

Ditlevsen, Peter D. 2010 Turbulence and Shell Models. Cambridge University Press.
Fan, Yuhong & Fang, Fang 2014 A simulation of convective dynamo in the solar convective envelope:

Maintenance of the solar-like differential rotation and emerging flux. The Astrophysical Journal
789 (1), 35.

Featherstone, Nicholas A. & Hindman, Bradley W. 2016a The emergence of solar supergranulation
as a natural consequence of rotationally constrained interior convection. The Astrophysical Journal
830 (1), L15.

Featherstone, Nicholas A. & Hindman, BradleyW. 2016b The spectral amplitude of stellar convection
and its scaling in the high-rayleigh-number regime. The Astrophysical Journal 818 (1), 32.

Fuentes, J. R., Cumming, A. & Anders, E. H. 2022 Layer formation in a stably-stratified fluid cooled from
above. towards an analog for jupiter and other gas giants.

Gastine, T., Yadav, R. K., Morin, J., Reiners, A. &Wicht, J. 2013 From solar-like to antisolar differential
rotation in cool stars.Monthly Notices of the Royal Astronomical Society: Letters 438 (1), L76–L80.

Gent, Frederick A., Mac Low, Mordecai-Mark, Käpylä, Maarit J. & Singh, Nishant K. 2021 Small-
scale dynamo in supernova-driven interstellar turbulence. The Astrophysical Journal Letters 910 (2),
L15.

Guerrero, G., Smolarkiewicz, P. K., Kosovichev, A. G. & Mansour, N. N. 2013 Differential rotation
in solar-like stars from global simulations. The Astrophysical Journal 779 (2), 176.

Hanasoge, Shravan M., Duvall, Thomas L. & DeRosa, Marc L. 2010 Seismic constraints on interior
solar convection. The Astrophysical Journal 712 (1), L98–L102.

Hanasoge, ShravanM, Duvall, Thomas L & Sreenivasan, Katepalli R 2012 Anomalously weak solar
convection. Proceedings of the National Academy of Sciences 109 (30), 11928–11932.

Hanasoge, Shravan M, Gizon, Laurent & Sreenivasan, Katepalli R. 2016 Seismic sounding of
convection in the sun. Annual Review of Fluid Mechanics 48 (1), 191–217.

Hanasoge, Shravan M, Hotta, Hideyuki & Sreenivasan, Katepalli R 2020 Turbulence in the sun is
suppressed on large scales and confined to equatorial regions. Science Advances 6 (30).

Harris, Charles R., Millman, K. Jarrod, van der Walt, Stéfan J., Gommers, Ralf, Virtanen, Pauli,
Cournapeau, David, Wieser, Eric, Taylor, Julian, Berg, Sebastian, Smith, Nathaniel J.,
Kern, Robert, Picus, Matti, Hoyer, Stephan, van Kerkwijk, Marten H., Brett, Matthew,
Haldane, Allan, del Río, Jaime Fernández, Wiebe, Mark, Peterson, Pearu, Gérard-
Marchant, Pierre, Sheppard, Kevin, Reddy, Tyler, Weckesser, Warren, Abbasi, Hameer,
Gohlke, Christoph & Oliphant, Travis E. 2020 Array programming with NumPy. Nature
585 (7825), 357–362.

Hotta, H., Iijima, H. & Kusano, K. 2019 Weak influence of near-surface layer on solar deep convection
zone revealed by comprehensive simulation from base to surface. Science Advances 5 (1), eaau2307.

Hotta, H. & Kusano, K. 2021 Solar differential rotation reproduced with high-resolution simulation.
Hotta, H., Rempel, M. & Yokoyama, T. 2015 Efficient small-scale dynamo in the solar convection zone.

The Astrophysical Journal 803 (1), 42.
Hunter, J. D. 2007 Matplotlib: A 2d graphics environment. Computing in Science & Engineering 9 (3),

90–95.



11

Käpylä, P. J. 2021 Prandtl number dependence of stellar convection: Flow statistics and convective energy
transport. A&A 655, A78.

Käpylä, P. J., Käpylä, M. J. & Brandenburg, A. 2014 Confirmation of bistable stellar differential rotation
profiles. A&A 570, A43.

Karak, Bidya Binay, Miesch, Mark & Bekki, Yuto 2018 Consequences of high effective prandtl number
on solar differential rotation and convective velocity. Physics of Fluids 30 (4), 046602.

Kumar, Abhishek & Verma, Mahendra K. 2015 Shell model for buoyancy-driven turbulence. Phys. Rev.
E 91, 043014.

Lignières, F. 1999 The small-péclet-number approximation in stellar radiative zones. A&A 348, 933–939.
Lord, J. W., Cameron, R. H., Rast, M. P., Rempel, M. & Roudier, T. 2014 The role of subsurface flows

in solar surface convection: Modeling the spectrum of supergranular and larger scale flows. The
Astrophysical Journal 793 (1), 24.

L’vov, Victor S, Podivilov, Evgenii, Pomyalov, Anna, Procaccia, Itamar & Vandembroucq, Damien
1998 Improved shell model of turbulence. Physical Review E 58 (2), 1811.

Miesch, Mark S, Brun, Allan Sacha, DeRosa, Marc L & Toomre, Juri 2008 Structure and evolution
of giant cells in global models of solar convection. The Astrophysical Journal 673 (1), 557.

O’Mara, Bridget, Miesch, Mark S., Featherstone, Nicholas A. & Augustson, Kyle C. 2016 Velocity
amplitudes in global convection simulations: The role of the prandtl number and near-surface driving.
Advances in Space Research 58 (8), 1475–1489, solar Dynamo Frontiers.

Schumacher, Jörg & Sreenivasan, Katepalli R. 2020 Colloquium: Unusual dynamics of convection in
the sun. Rev. Mod. Phys. 92, 041001.

Shampine, Lawrence F & Reichelt, Mark W 1997 The matlab ode suite. SIAM journal on scientific
computing 18 (1), 1–22.

Spiegel, EdwardA1962Thermal turbulence at very small prandtl number. Journal of Geophysical Research
67 (8), 3063–3070.

Spruit, H. C. 1997 Convection in stellar envelopes: a changing paradigm. Mem. Soc. Astron. Italiana 68,
397–413.

Virtanen, Pauli, Gommers, Ralf,Oliphant, Travis E., Haberland,Matt, Reddy, Tyler, Cournapeau,
David, Burovski, Evgeni, Peterson, Pearu, Weckesser, Warren, Bright, Jonathan, van der
Walt, Stéfan J., Brett, Matthew, Wilson, Joshua, Millman, K. Jarrod, Mayorov, Nikolay,
Nelson, Andrew R. J., Jones, Eric, Kern, Robert, Larson, Eric, Carey, C J, Polat, İlhan,
Feng, Yu, Moore, Eric W., VanderPlas, Jake, Laxalde, Denis, Perktold, Josef, Cimrman,
Robert, Henriksen, Ian, Quintero, E. A., Harris, Charles R., Archibald, Anne M., Ribeiro,
Antônio H., Pedregosa, Fabian, van Mulbregt, Paul & SciPy 1.0 Contributors 2020 SciPy
1.0: Fundamental algorithms for scientific computing in python. Nature Methods 17, 261–272.

Vlaykov, D. G., Baraffe, I., Constantino, T., Goffrey, T., Guillet, T., Le Saux, A., Morison, A. &
Pratt, J. 2022 Impact of radial truncation on global 2d hydrodynamic simulations for a sun-like
model. MNRAS .

Yamada, Michio & Ohkitani, Koji 1987 Lyapunov spectrum of a chaotic model of three-dimensional
turbulence. Journal of the Physical Society of Japan 56 (12), 4210–4213.


	1. Introduction
	2. Formulation of a shell model for stratified convection
	2.1. Simplifying the equations of motion
	2.2. Constructing the shell model

	3. Suppression of deep convection at low Prandtl number
	4. Conclusions
	Appendix A
	Appendix B

